Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species.
نویسندگان
چکیده
Sessile organisms often exhibit morphological changes in response to permanent exposure to mechanical stimulation (wind or water movements). The adaptive value of these morphological changes (hydrodynamic performance and consequences on fitness) has not been studied extensively, particularly for higher plants submitted to flow stress. The aim was to determine the adaptive value of morphological patterns observed within two higher aquatic plant species, Berula erecta and Mentha aquatica, growing along a natural flow stress gradient. The hydrodynamic ability of each ramet was investigated through quantitative variables (drag coefficient and E-value). Fitness-related traits based on vegetative growth and clonal multiplication were assessed for each individual. For both species, the drag coefficient and the E-value were explained only to a limited extent by the morphological traits used. B. erecta exhibited a reduction in size and low overall plant drag at higher flow velocities, despite high drag values relative to leaf area, due to a low flexibility. The plants maintained their fitness, at least in part, through biomass reallocation: one tall ramet at low velocity, but shorter individuals with many interconnected stolons when flow velocity increased. For M. aquatica, morphological differences along the velocity gradient did not lead to greater hydrodynamic performance. Plant size increased with increasing velocities, suggesting the indirect effects of current favouring growth in high velocities. The fitness-related traits did not demonstrate lower plant fitness for high velocities. Different developmental constraints linked to plant morphology and trade-offs between major plant functions probably lead to different plant responses to flow stress.
منابع مشابه
Thigmomorphogenetic responses of an aquatic macrophyte to hydrodynamic stress
The response of aquatic plants to abiotic factors is a crucial study topic, because the diversity of aquatic vegetation is strongly related to specific adaptations to a variety of environments. This biodiversity ensures resilience of aquatic communities to new and changing ecological conditions. In running water, hydrodynamic disturbance is one of the key factors in this context. While plant ad...
متن کاملMetabolic adaptations to arsenic-induced oxidative stress in Isatis cappadocica. Naser Karimi* and Zahra Souri
Arsenic is considered as one of the most important environmental contaminant elements. Some plant species can grow in arsenic contaminated soils and they are able to reduce arsenic toxicity. In this study, a hydroponic experiment was conducted on Isatis cappadocica, a newly-discovered As hyperaccumulator. Accordingly, we conducted this experiment to compare the interaction of effect of arsenic ...
متن کاملBiomechanical Properties of Aquatic Plants: Implications for Hydraulic Engineering and Aquatic Ecology
Aquatic vegetation in rivers often modifies hydraulic resistance and can enhance seasonally occurring flooding. To which extent a plant constitutes an obstacle in the flow is strongly influenced by its biomechanical traits which determine the ability of plants to reconfigure in the flow, i.e. to adopt a shape that minimizes drag forces and hence to smooth the flow dynamics in and around submerg...
متن کاملPhosphorus Inflow into Two Species of Clover Root with Different Morphology Colonized by AM Fungi
The effects of arbuscular mycorrhizal (AM) fungi on growth and phosphorus (P) inflow into two species of clover plant with different root morphology were studied. The experiment was arranged as a randomized complete block design consisting of a 2×3×3 factorial combination of two clover species (Trifolium alexandrinum L. and Trifolium pratense L.), three mycorrhiza states (without mycorrhiza, Gl...
متن کاملEffects of Salinity Stress on Seed Germination Characteristics of Two Medicinal Species Thymus kotschyanus and T. daenensis
The genus Thymus is perennial medicinal plants belong to the Lamiaceae familythat is used for different propose in pharmaceutical industry. Environmental stresses,particularly salinity, are considered as the major factor reducing plant growth. The purpose ofthis study was to investigate the effects of salt stress on germination characteristics andseedling morphology in two medicinal species of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 56 412 شماره
صفحات -
تاریخ انتشار 2005